anhydride and phosphoric acid reagent. The same yield of 2c was obtained.

Registry No.—1a oxime, 3349-64-2; 1b, 5462-81-7; 1c oxime, 42071-42-1; 2a, 42071-43-2; 2b, 42071-44-3; 2c, 42071-45-4; 3, 781-23-7; N-(4-phenanthryl)acetamide, 42071-47-6; γ -(p-chlorophenyl)butyric acid, 4619-18-5.

New Reactions of 3-Vinylindoles. II. Synthesis of 1,2-Dimethyl-3-(2-indolylcarbonyl)piperidine

GORDON W. GRIBBLE¹

Department of Chemistry, Dartmouth College, Hanover, New Hampshire 03755

Received July 19, 1973

In 1968, we reported² that 5-methyl-2,3,4,6,7,12hexahydroindolo[2,3-a]quinolizinium iodide (1) is converted on prolonged heating in aqueous ethanolic sodium hydroxide into 1,2-dimethyl-3-(2-indoly)carbonyl)piperidine (2), the product of a remarkable structural transformation.

Our original assignment was based on degradative studies, model reactions, and mechanistic considerations.² The complexity of the $1 \rightarrow 2$ rearrangement and the potential importance of the observed nucleophilic reactions of the intermediate 3-vinylindoles demanded further investigation of this transformation.

We now wish to describe an independent synthesis of 2-acylindole 2 which confirms the originally proposed structure. Our synthesis of 2 is outlined in Scheme I. An aldol condensation³ between 2-methyl-3-acetylpyridine⁴ and 2-nitrobenzaldehyde gives the unsaturated ketone 3 (17%) after dehydration of the intermediate ketol. Ketalization with ethylene glycol affords the nitrostyrene ketal 4 (97%) which on heating with triethyl phosphite³ gives indole ketal 5 (52%).⁵ Treating 5 with methyl iodide yields pyridinium salt 6 (~100%), which on successive exposure⁶ to sodium borohydride, hydrogen, and aqueous acid gives a mixture of 2-acylindoles 2 and 7 (36% from 6).⁷

The mixture of 2-acylindoles could be separated by column chromatography into a major (92%) and a minor (8%) compound. The minor 2-acylindole is identical with the 2-acylindole obtained from 1.

(1) Recipient of a Public Health Service Research Career Development Award (1 KO4-GM 23756) from the National Institute of General Medical Sciences.

- (2) L. J. Dolby and G. W. Gribble, Tetrahedron, 24, 6377 (1968).
- (3) R. J. Sundberg, H. F. Russell, W. V. Ligon, Jr., and L.-S. Lin, J. Org. Chem., 37, 719 (1972).
- (4) A. Dornow and W. Schacht, Chem. Ber., 82, 117 (1949).

(5) Attempts to cyclize 3 with triethyl phosphite give either no reaction or, on prolonged heating, no recognizable products.
(6) Attempts to hydrogenate 6 directly to the piperidine ketal are un-

(6) Attempts to hydrogenate 6 directly to the piperidine ketal are unsatisfactory.

Furthermore, the major 2-acylindole is completely converted into the minor 2-acylindole under the basic reaction conditions. On this basis, we assign the major 2-acylindole to the presumed less stable cis configuration 7 and the minor 2-acylindole to the more stable trans configuration 2. In our original work² we made no attempt to assign stereochemistry to the single 2acylindole obtained from 1. If the intermediate tetrahydropyridine from 6 is 8, as seems likely,⁸ then it is reasonable to suppose that catalytic hydrogenation will proceed on the side away from the allylic methyl group to give mainly the cis configuration⁹ 7, after regeneration of the carbonyl group.¹⁰

Experimental Section

Melting points were determined in open capillaries with a Mel-Temp Laboratory Devices apparatus and are uncorrected. Infrared spectra were measured with Perkin-Elmer 137 or 337 instruments. Nmr spectra were obtained with a Perkin-Elmer R-24 spectrometer. Woelm alumina was used for column chromatography and silica gel G (Merck) was used for thin layer chromatography (tlc). The tlc solvent system generally used was EtOAc-Et₈N (~95:5) and plates were developed with a spray of 3% Ce(SO₄)₂-10% H₂SO₄ followed by a brief heat treat-

⁽⁷⁾ The crude reaction product also appears to contain the $alcohols^2$ (14%) corresponding to 2 and 7, probably resulting from partial deketalization during NaBH₄ reduction.

⁽⁸⁾ R. E. Lyle and P. S. Anderson, Advan. Heterocycl. Chem., 6, 45 (1966).

 ⁽⁹⁾ The catalytic hydrogenation of 1,2,3-trimethylpyridinium iodide gives 99% cis product: M. Tsuda and Y. Kawazoe, *Chem. Pharm. Bull.*, 18, 2499 (1970).

⁽¹⁰⁾ The small amount of **2** obtained probably does not arise by acidcatalyzed epimerization during the deketalization, because treating **7** under acidic conditions (aqueous ethanolic HCI, reflux, 2 hr) does not convert it to **2**.

Notes

ment at 110°. Organic solutions were dried with anhydrous granular K_2CO_3 and concentrated *in vacuo* with a Buchler rotary evaporator. Microanalyses were performed by PCR, Inc., Gainesville, Fla., and Micro-Tech Labs Inc., Skokie, Ill. Mass spectra were determined by Mr. J. W. Suggs and Mr. H. E. Ensley at Harvard University.

3-(2-Nitrophenyl)-1-(2-methyl-3-pyridyl)-2-propen-1-one (3).-To a solution of 12 g (0.079 mol) of 2-nitrobenzaldehyde (Aldrich), 3.0 g (0.075 mol) of NaOH, 30 ml of H₂O, 30 ml of EtOH, and 25 ml of Et_2O at $0-5^\circ$ was added with stirring over 1 hr 10 g (0.074 mol) of 2-methyl-3-acetylpyridine.⁴ A yellow precipitate formed during the addition, and near the end of the addition 25 ml of Et_2O was added. The mixture was stirred at $0-5^\circ$ for 2 hr and then stored in a refrigerator at 5° for 24 hr. The solid was collected by filtration and dissolved in 300 ml of benzene. The benzene solution was washed with water and refluxed with 0.9 g of p-toluenesulfonic acid (Dean-Stark trap) for 4 hr. The solution was filtered, washed with aqueous NaHCO3 and then H₂O, dried, and concentrated to give a dark solid. Chromatography over activity III basic alumina gave, with benzene elution, 3.4 g (17%) of 3 as a white solid, mp 133-135°. Recrystallization from MeOH-Et₂O gave colorless needles, mp 140-142°.

Pertinent spectral data for **3** are as follows: ir $(CHCl_8)$ 2990, 1660, 1520, 1440, 1340, 1290, and 975 cm⁻¹; nmr $(CDCl_8) \delta$ 2.69 (s, 3), 7.7 (m, 8), and 8.6 ppm (m, 1).

Anal. Calcd for $C_{15}H_{12}N_2O_5$: C, 67.16; H, 4.51; N, 10.44. Found: C, 67.20; H, 4.60; N, 10.34.

2-[2-(2-Nitrophenyl)vinyl]-2-(2-methyl-3-pyridyl)-1,3-dioxolane (4).—A mixture of 6.85 g (0.0255 mol) of ketone 3, 5.4 g (0.028 mol) of p-toluenesulfonic acid, 4.8 ml of ethylene glycol, and 120 ml of benzene was refluxed (Dean-Stark trap) with stirring. After 3 hr, more ethylene glycol (7 ml) and p-toluenesulfonic acid (1.7 g) were added and reflux was continued for 23 hr. The solution was allowed to cool and poured into water. The mixture was basified with 2 N NaOH and the benzene layer was separated. The aqueous layer was extracted with fresh benzene and the combined benzene extracts were washed with 1 N NaOH and then H₂O, dried, and concentrated to give 7.74 g (97%) of 4 as a yellow solid. Recrystallization from Et₂Ohexane gave large, colorless prisms, mp 91-93°.

Pertinent spectral data for 4 are as follows: ir (CHCl₃) 2980, 1520, 1440, 1340, 1050, and 969 cm⁻¹; nmr (CDCl₃) δ 2.70 (s, 3), 4.05 (m, 4), 6.67 (AB q, 2, J = 15 Hz), 7.4 (m, 4), 7.9 (m, 2), and 8.24 ppm (d of d, 1).

Anal. Caled for $C_{17}H_{16}N_2O_4$: C, 65.38; H, 5.16; N, 8.97. Found: C, 65.48; H, 5.02; N, 8.89.

2-(2-Indolyl)-2-(2-methyl-3-pyridyl)-1,3-dioxolane (5).-To a refluxing, stirred solution of 30 ml of triethyl phosphite (distilled and passed through activity I basic alumina prior to use) under N_2 was added a solution of 1.57 g (0.00503 mol) of 4 in 40 ml of triethyl phosphite over a period of 3.5 hr. After addition, the mixture was refluxed for 5 hr and then allowed to stand overnight at 25°. The mixture was concentrated to near dryness (vacuum pump) and the residue was dissolved in 100 ml of Et_2O . The solution was stirred and saturated with HCl gas at 0° until The the formation of insoluble material was judged complete. ether was decanted off, and the residue was washed with ether and then treated with $CHCl_3$ and 2 N NaOH (ice cooling). Further extraction with CHCl₃ gave, after washing, drying, and concentration, a dark oil. Chromatography over activity III basic alumina gave, with benzene elution, 0.73 g (52%) of 5 as oily crystals. Recrystallization from benzene and then CHCl3hexane gave pure 5 as colorless, fluffy needles, mp 182-183°. A larger run with 7.75 g of 4 gave 5 in 38% yield.

Pertinent spectral data for 5 are as follows: ir $(CHCl_3)$ 3495, 2980, 1290, 1170, 1080, and 1430 cm⁻¹; nmr (CDC_3) δ 2.55 (s, 3) 3.85 (m, 4), 6.10 (broad s, 1), 7.1 (m, 5), 7.86 (d of d, 1), and 8.27 ppm (d of d, 1).

Anal. Calcd for $C_{17}H_{16}N_{2}O_{2}$: C, 72.84; H, 5.75; N, 9.99. Found: C, 73.01; H, 5.69; N, 10.11.

1,2-Dimethyl-3-[2-(2-indolyl)-1,3-dioxolan-2-yl] pyridinium Iodide (6).—A mixture of 1.37 g (0.00489 mol) of 5 and 10 ml of methyl iodide in 30 ml of benzene was stirred at 25° for 2 hr and then at 50° for 2 hr. After 3 days at 25°, the precipitate was collected and washed with benzene and then Et₂O to give 2.1 g (~100%) of 6 as a light yellow powder. Recrystallization from MeOH-Et₂O gave pure 6 as tiny, colorless needles, mp 214-216°. Anal. Caled for $C_{18}H_{19}N_2O_2I$: C, 51.20; H, 4.54; N, 6.63. Found: C, 51.02; H, 4.56; N, 6.48.

cis- and trans-1,2-Dimethyl-3-(2-indolylcarbonyl)piperidine (2 and 7).—To a stirred solution of 0.5 g of NaBH₄ in 30 ml of 70%aqueous EtOH at $0-5^{\circ}$ was added 0.56 g (0.0013 mol) of 6 over 1 min. After addition, more EtOH (5 ml) was added and the mixture was stirred at $0-5^{\circ}$ for 1 hr and then at 25° . An additional 0.5 g of NaBH, and 15 ml of 50% EtOH were added after . After stirring for 22 hr, the mixture was extracted 4 hr at 25° with CH₂Cl₂. The extract was washed, dried, and concentrated to give 0.42 g of a yellow foam. The yellow foam was hydrogenated in 30 ml of EtOH with 0.15 g of 10% Pd/C at 25° (1 atm). Filtration and concentration gave 0.42 g of an amber oil. The amber oil was refluxed for 1 hr with 20 ml of 80% aqueous ethanol and 10 drops of concentrated HCl. The mixture was basified with 2 N NaOH, concentrated to near dryness, and extracted with CH₂Cl₂. The extract was washed, dried, and concentrated to give 0.30 g (88% crude from 6) of a yellow-brown solid. Chromatography over activity III basic alumina gave, with benzene elution, 0.009 g (3%) of 2 as a yellow solid and 0.114 g (33%) of 7 as a white solid. Further elution with benzene and benzene-CHCl₃ gave 0.046 g of an amber gum which appeared to be a mixture of the alcohols derived from 2 and 7.

Recrystallization from MeOH-Et₂O-hexane gave pure 2 as tiny prisms, mp $169-170^{\circ}$ (lit.² mp $167-168^{\circ}$). This synthetic material was completely identical (tlc, infrared, mass spectrum) with a freshly recrystallized sample (mp $172-174^{\circ}$) of 2 as obtained² from 1.

Recrystallization from MeOH-Et₂O-hexane gave pure 7 as tiny cubes of fluffy needles, mp 184-185°. This material was distinguishable from 2 in the fingerprint region of the infrared spectrum, and 7 exhibited a higher R_t (0.73) and a lighter browncolored spot on the than did 2 (R_f 0.69). 7 showed nearly the same mass spectrum as 2.

Pertinent spectral data for 7 are as follows: ir $(CHCl_3)$ 3520, 3370, 2970, 1650, 1520, 1340, 1130, and 1110 cm⁻¹; nmr $(CDCl_3)$ $\delta 0.88$ (d, 3, J = 6 Hz), 2.38 (s, 3), 7.3 ppm (m, 5). A mixture nmr spectrum of 2 and 7 clearly showed separate methyl resonances for the two epimers.

Anal. (7) Calcd for $C_{16}H_{20}N_2O$: C, 74.97; H, 7.86; N, 10.93. Found: C, 74.93; H, 7.92; N, 10.97.

Conversion of 7 into 2.—A mixture of 15 mg of a mixture of 2 and 7 (\sim 50:50 by tlc) was refluxed under N₂ with 1.2 ml of 10% aqueous NaOH and 1.5 ml of 50% aqueous EtOH for 5 hr. Extraction with CH₂Cl₂ gave, after the usual work-up, 15 mg of a yellow solid showing only 2 by tlc, mp 167–169°. Recrystallization from MeOH-Et₂O-hexane gave pure 2 (tlc, infrared). A similar reaction with 44 mg of pure 7 gave 37 mg (84%) of 2. The epimerization appears to be complete in 30 min by tlc and no 7 can be detected by tlc or nmr.

Acknowledgment.—The author wishes to thank Mr. James Wu for preparing 2-methyl-3-acetylpyridine, and the National Science Foundation (GP-13374), Eli Lilly, Merck Sharp and Dohme, and the National Institutes of Health (CA-14237) for their generous financial support of our research program.

Registry No.—2, 42031-20-9; 3, 42031-21-0; 4, 42031-22-1; 5, 42031-23-2; 6, 42031-24-3; 7, 42031-25-4; *o*-nitrobenzaldehyde, 552-89-6; 2-methyl-3-acetylpyridine, 1721-12-6.

Secondary Orbital Interactions Determining Regioselectivity in the Diels-Alder Reaction

P. V. Alston, * R. M. Ottenbrite, and D. D. Shillady

Department of Chemistry, Virginia Commonwealth University, Richmond, Virginia 23220

Received August 9, 1973

Recently, there has been considerable interest in the prediction of the preferred regioisomers of the Diels-